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Received 3 November 2005; accepted 8 February 2006
Available online 20 March 2006

Abstract

In various fields of materials science, many interesting two-dimensional (2D) and three-dimensional (3D) structures (fullerenes,
nanotubes, frothes, metal foams, polycrystals and, notably, various quasicrystals) can be considered as finite or infinite cellular
systems. For a cell T of a given 2D cellular system, we write n(T ) to denote the number of sides of T , and m(T ) to denote the
average number of sides of the neighbours of T . In the 3D case, we replace sides by faces in the definition. D. Weaire first observed,
for trivalent random tilings of the plane, that 〈n · m〉 = 〈n2

〉, where 〈·〉 stands for the expected value. Following his discovery, the
Weaire sum rule has been proved for various tilings of a sphere or a torus, and for periodic tilings of the plane or space. In this
paper we extend the Weaire sum rule to quasiperiodic tilings of the plane or space. Actually, the method of this paper yields the
Weaire sum rule for tilings of any compact surface or three-manifolds as well.
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1. Tilings and the Weaire sum rule

In various fields of materials science, many interesting two-dimensional (2D) and three-dimensional (3D) structures
(fullerenes, nanotubes, frothes, metal foams, polycrystals and, notably, various quasicrystals) can be modeled by a
special arrangement of tilings by polygons and polytopes, and thus can be considered as finite or infinite cellular
systems. Over the past three decades, many studies have concentrated on random and periodic cellular structures
(see [5–7,13,16,17,20,21]). This paper presents a general method, which is designated primarily to detecting certain
combinatorial characteristics of quasiperiodic systems composed of d-dimensional cells for d ≥ 2.

By a convex polytope P in the d-dimensional Euclidean space, we mean the intersection of finitely many
half-spaces, provided that the intersection is bounded and has non-empty interior. After throwing away the irrelevant
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Fig. 1. The corona of a tile.

half-spaces, we may assume that the family of half-spaces is minimal in order to generate P . In this case, the
intersections of P with the hyper planes (or, in other words, affine (d − 1)-planes) bounding the half-spaces are
the facets of P . In particular, each facet is a convex (d −1)-polytope, and the boundary of P is the union of the facets.
We note that a facet is a side in the planar case (d = 2) and what is traditionally called a face in the 3D case (d = 3).

Next, we generalize the notion of a polytope. The common examples of spaces that are considered in this area are
the d-dimensional Euclidean space Rd , the d-sphere Sd bounding the (d +1)-dimensional Euclidean unit ball, and the
d-torus that is homeomorphic (topologically equivalent) to the direct product of d circles. We call the homeomorphic
image of a d-dimensional convex polytope a d-cell, and the images of the facets the facets of the cell. Here, tiling
means that the tiles generate a tessellation without gaps and overlapping, and “facet to facet” stands for the property
that any facet of some tile is the facet of some other tile, and any two tiles share at most one common facet. In
particular, if a d-manifold (like the Euclidean space, or the sphere, or a torus) is tiled this way, then any facet belongs
to exactly two tiles. Given a tile T , the tiles that share a common facet with T are called the neighbours of T , and the
family of neighbours together with T form the corona around T (see Fig. 1). Our basic functions of a tile T are n(T ),
which is the number of facets of T , and the facet coordination number m(T ), which is the average number of facets
of the neighbours of T . More precisely, if S1, . . . , Sk , k = n(T ), are the neighbours of T , then

m(T ) =

∑
i

n(Si )

n(T )
.

We note that n · m is the total number of facets of the neighbours of the tile.
In the case of a finite tiling {Ti }, let us consider each tile with equal probability. If f is any function of the tiles,

then we write 〈 f 〉 to denote the expected value of f ; namely,

〈 f 〉 =

∑
i

f (Ti )

#{Ti }

where # stands for the cardinality of a set. Then the Weaire sum rule (observed first by Weaire [20] for trivalent random
tilings of the plane) states that

〈n · m〉 = 〈n2
〉. (1)

This has been proved for various tilings of a sphere or a torus in [6,7,13,16,17,20,21]. Actually, the method of this
paper yields the Weaire sum rule (1) for any finite facet-to-facet tiling of some compact manifold (see Remark 4).

Now we turn to infinite tilings of Rd . Given such a tiling, a protoset is a subcollection of tiles such that any tile in
the tiling is the translate of some element of the protoset. Let us consider a facet to facet tiling {Ti } of Rd with finite
protoset. We write Bd to denote the unit ball of Rd centred at the origin, hence r Bd is the ball of radius r . If f is any
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Fig. 2. Tiles in a big circle.

function of the tiles, then the expected value of f is defined by

〈 f 〉 = lim
r→∞

∑
Ti ⊂r Bd

f (Ti )

#{Ti : Ti ⊂ r Bd}
(2)

provided that the limit exists (see Fig. 2, which exhibits this approach on the tiling discussed in Section 6.1).
We briefly recall the argument of [17] concerning periodic tilings. Let us recall that a lattice is a subgroup of the

translates of Rd isomorphic to Zd . Assume that the tiling {Ti } of Rd is periodic with respect to a lattice Λ, hence both
n and m are also periodic with respect to Λ. In this case, {Ti } induces a finite tiling {T̃i } on the torus Rd/Λ that is the
quotient of Rd by Λ (obtained, say, by identifying opposite facets of a fundamental parallelepiped of Λ). It is easy to
see that, if the function f in (2) is periodic with respect to Λ, then the expected value of f coincides with the expected
value of the induced function on {T̃i }. In particular, the Weaire sum rule for the tiling of the torus yields the Weaire
sum rule for the periodic tiling of Rd .

Closer inspection of the argument above shows that the proof has two major parts: first to find a finite probability
space for the translation types of the coronas occurring in {Ti }, and secondly to verify the equivalent of the Weaire
sum rule on that probability space. In the case of periodic tilings, the first step is easiest to achieve by considering the
induced tiling on a corresponding torus. The goal of this paper is to extend the Weaire sum rule (1) to quasiperiodic
tilings where certain long-range order still allows us to carry out the first step.

2. Quasiperiodic tilings

The discovery of quasicrystals in 1984 was based on the fact that their structures exhibit some long-range
order, while they have symmetries forbidden for crystals (see Janot [9] and Senechal [18] for nice reviews about
quasicrystals). Ever since, the so-called quasiperiodic tilings of the plane or the space have been investigated
extensively, and the aim of this paper is to verify the Weaire sum rule for such tilings. Now, the Weaire sum rule makes
sense for an infinite tiling only if the tiling has the so-called uniform patch frequency (see (3) below for the definition).
We note that planar quasiperiodic tilings of five-fold symmetry had already been constructed by Penrose [15] ten
years before the discovery of quasicrystals (see Fig. 3). His construction still serves as a fundamental example, and
the quasiperiodic tilings with uniform patch frequency discussed below can be considered as generalizations of the
Penrose tilings.

We now introduce some fundamental notions. Let us consider a facet-to-facet tiling of Rd with a finite protoset.
A finite collection of the tiles is called a patch. We say that the tiling has uniform patch frequency if, for any patch
Π , there exists a positive number q with the following property (compare [18,19]): given any bounded set S whose
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Fig. 3. Penrose tiling with rhombi.

interior is non-empty and whose boundary is of Lebesgue measure zero, we have

lim
r→∞

#{patches that are translates of Π and contained in r S}

V (r S)
= q (3)

where r S is the dilated copy of S by factor r . If, instead of V (r S), we divide by the number of tiles that are contained
in r S, then we obtain the probability p(Π ) of Π ; namely,

p(Π ) = lim
r→∞

#{patches that are translates of Π and contained in r S}

#{tiles that are contained in r S}
. (4)

Observe that p(Π ) is always between zero and one, and is independent of the choice of S.
In this paper we prove the Weaire sum rule for quasiperiodic tilings (see Section 3 for examples of corresponding

tilings, and Section 4 for a proof of the theorem):

Theorem 1. Given a facet-to-facet tiling T of Rd with finite protoset and with uniform patch frequency, we have

〈n · m〉 = 〈n2
〉.

Remark 2. While it is essential that any facet of some tile is the facet of some other tile, it is not necessary to assume
in Theorem 1 that any two tiles have at most one common facet. The only difference in the notions and in the argument
is that, in this case, the definition of m(T ) for a tile T should be modified: when calculating the average number of
facets of the neighbours of T , each neighbour is counted as many times as the number of common facets it has with T .

Since both n(T ) and m(T ) depend only on the corona of a tile T , and we have only finitely many translation types
of coronas, the quantities occurring in Theorem 1 make sense by uniform patch frequency.

We note that various examples lead us to believe that the expected value of the facet coordination number is always
at least the expected value of the number of facets (see say (27)).

Conjecture 3. For any facet-to-facet tiling, we have

〈m〉 ≥ 〈n〉,

with equality if and only if each tile has the same number of neighbours.

3. Examples for quasiperiodic tilings with uniform patch frequency

We present various classes of quasiperiodic tilings having uniform patch frequency. Our examples can be
considered as generalizations of the classical Penrose tilings (see Fig. 3 for the version with two types of rhombi).
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Fig. 4. The Dirichlet–Voronoi tiling w.r.t. the vertices of the Penrose tiling.

We note that the so-called linearly repetitive sets are candidates for being “perfect quasicrystals”, but it is rather
hard to determine the actual probability of a given patch. From the practical point of view, self-affine tilings (see
Section 3.4) and tilings related to cut and project sets (see Section 3.2) are more interesting.

For all our tilings, it will be easy to see that they have a finite protoset, and the only requirement is to have
uniform patch frequency. Many tilings result from a discrete set. All suitable discrete sets are Delone sets of finite
type, discussed in Section 3.1. Two examples that always have uniform patch frequency are cut and project sets (see
Section 3.2) and linearly repetitive sets (see Section 3.3). Two direct approaches to obtain tilings with uniform patch
frequency are linearly repetitive tilings (see Section 3.3) and tilings “resulting from inflation”.

3.1. Tilings related to Delone sets of finite type

First we introduce some fundamental notions related to discrete sets. We say that a discrete set Γ ⊂ Rd is a Delone
set if there exist positive r and R such that the distance between any two points is at least r , and any ball of radius R
contains a point of Γ . We call a finite subset of Γ a discrete patch, where subsets have a similar role to patches in the
case of tilings. In addition, Γ has finite type if balls of radius 2R contain only finitely many different discrete patches
up to translation. In this case, for any fixed ω > 0, balls of radius ω contain only finitely many different discrete
patches up to translation according to Lagarias [10]. We define uniform patch frequency of Γ by (3) analogously to
tilings (only Π is naturally a discrete patch in the case of Γ ).

Two ways are known to relate a tiling to a Delone set of finite type. First, let us consider a tiling with finite protoset.
We say that the vertices of the tiling determine the tiling if the vertex sets of two tiles are translates of each other, then
the tiles are translates of each other (see, say, the Penrose tiling on Fig. 3). In this case, the tiling has uniform patch
frequency if the vertex set has uniform patch frequency.

Another method for relating a tiling to a discrete set Γ is to assign the Dirichlet–Voronoi cell Dx corresponding to
each x ∈ Γ . We recall that Dx is the family of points whose distance from x is no larger than the distance from any
other point of Γ . If any half-space intersects Γ , then each Dx is a convex polytope, and the Dirichlet–Voronoi cells
form a facet-to-facet tiling of the space (see Fig. 4 in the case of the vertex set of the Penrose tiling). Since Γ is of
finite type, we have only finitely many Dirichlet–Voronoi cells up to translation. We observe that, if Γ has uniform
patch frequency, then the same holds for the tiling by the Dirichlet–Voronoi cells as well.

3.2. Tilings based on cut and project sets

Cut and project sets (or model sets) in Rd arise from projecting suitable chosen points of a higher-dimensional
lattice into Rd . A precise definition runs as follows. We consider L = Rd as a linear subspace in Rd for N > d, and
write L⊥ to denote the orthogonal complement of L in RN . Now let Λ be a lattice in RN such that the origin is the



44 K.J. Böröczky et al. / Journal of Geometry and Physics 57 (2006) 39–52

only lattice point in L . We fix a bounded set W , the so-called window in L⊥, and define the cut and project set Γ to
be the projections of the points Λ into L whose projection into L⊥ lands in W . It is always assumed that the window
W has positive measure |W | in L⊥, and its boundary is measure zero in L⊥. In addition, Γ is called a primitive cut
and project set if the origin is the only lattice point in L⊥ as well. In this case

lim
r→∞

#(Γ ∩ r Bd)

V (r Bd)
=

|W |

det Λ
. (5)

This observation is due to De Bruijn [4] (see also Senechal [18]). Now, for any discrete patch Π , we fix a vertex v,
and one can define a part WΠ of the window satisfying the following property. For x ∈ Λ, we write x ′ to denote its
projection into L . Then Π + (x ′

− v) is a discrete patch if and only if the projection of x into L⊥ lands into WΠ .
Therefore, the frequency of Π with respect to the volume is |WΠ |

det Λ .
Since any cut and project set is the union of finitely many primitive ones, we deduce that cut and project sets have

uniform patch frequency. In addition, the associated tiling by the Dirichlet–Voronoi cells also have uniform patch
frequency. We note that the vertices of the Penrose tiling (see Fig. 3) form a cut and project set. More precisely, let L
be a two-dimensional invariant subspace of the action of the cyclic group of order five on the basis vectors, and let us
project Z5 into L . In this case, the window is the projection of the unit cube [0, 1]

5 into L⊥, and the resulting cut and
project set is the union of five primitive ones.

3.3. Linearly repetitive tilings

Following Lagarias and Pleasant [12], we call a tiling linearly repetitive if, for any given discrete patch of
circumradius ω, each ball of radius cω contains a discrete patch that is a translate of the given patch where c is a
constant. We note that the tiling is an ideal crystal (namely, it is periodic) if and only if the cω above can be replaced
by ω+ c. In addition, if the tiling is not an ideal crystal, then the linear growth rate is the smallest possible growth rate
for the difference of the “radius of repetitivity” and of the radius of the discrete patch (see Lagarias and Pleasant [11]).
Many of the tilings known in the literature are linearly repetitive, for example the Penrose tilings (see Grünbaum and
Shephard [14], p. 563). The fact that linearly repetitive tilings have uniform patch frequency is verified in Lagarias
and Pleasant [12].

Analogously, we say that a discrete set Γ is linearly repetitive if

• there exists a positive r such that the distance of any two elements is at least r ;
• there exists a c > 1 such that, for any given discrete patch of circumradius R ≥ r , each ball of radius cR contains

a discrete patch that is a translate of the given discrete patch.

Then Γ has uniform patch frequency as well (see Lagarias and Pleasant [12]). Again, the vertex set of the Penrose
tiling on Fig. 3 is linearly repetitive.

3.4. Self-affine tilings and relatives

We say that a linear map ϕ is expansive if it is diagonalizable over C, and each eigenvalue is of absolute value
larger than one. We call a tiling self-affine if the following conditions are satisfied:

• Repetitive: for any given patch, there exists an ω > 0 such that each ball of radius ω contains a patch that is a
translate of the given patch;

• Inflation: there exists an expansive linear map ϕ such that the ϕ image of any tile is the union of a patch;
• Deflation: if the tiles T1 and T2 are translates, then the patches corresponding to ϕ(T1) and ϕ(T2) are translates as

well.

It is well known that self-affine tilings have uniform patch frequency (see, say, Solomyak [19]). Since there exist
only finitely many tiles up to translation, we deduce that some power of ϕ acts by multiplication by an η > 1. The
dilatation by η is an inflation, but it may not be a deflation. We note that the term repetitive is used, say, in Senechal [18]
or in Lagarias and Pleasant [12], and the same property is called local isomorphism, say, in Solomyak [19].

The most famous example is the Penrose tiling by congruent copies of two rhombi (see Figs. 3 and 5 where
ω =

π
5 ): The rhombi are built from triangles: one is of side lengths 1, 1 and τ , and the other is of side lengths 1, 1
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Fig. 5. Deflation for the Penrose tiling.

and 1/τ where τ is the golden ratio
√

5+1
2 . Here, the expansive map ϕ is the multiplication by the complex number

τ e
3π
5 i . In this case, as usual the ϕ image of a tile is not the union of a patch, but one can still assign a patch to it in a

natural way. Numerous self-affine tilings with various symmetry groups have been constructed since the discovery of
the Penrose tilings, both in the plane and in the three space (see the papers Baake, Hermisson and Pleasants [2] and
Baake, Hermisson and Richard [3] for such examples).

4. The Weaire sum rule for quasiperiodic tilings

In this section we prove Theorem 1. Let T be a facet-to-facet tiling of Rd with finite protoset and with uniform
patch frequency. A simple-minded approach is to consider the (finitely many) translation types C1, . . . , Ck of coronas,
and to define the probability space on them where a Ci occurs with probability p(Ci ) (compare (4)). Since we are
only interested in the combinatorics of the coronas, this approach is not too economic. Say, in the case of Penrose
tiling on Fig. 3, a protoset requires 20 rhombi, while we only need two rhombi up to congruence. Therefore we apply
a more economic approach.

We may define the probability pn that the number of facets of a tile is n; namely, pn is the sum of the probabilities
of the tiles that have n facets (see (4)). In particular∑

n
pn = 1; (6)

〈nz
〉 =

∑
n

nz pn for any z ∈ R (7)

where naturally pn is non-zero only for finitely many n.
Next we define the neighbourly indicator H(n, k) that is proportional to the frequency of ordered pairs (T, S) of

neighbouring tiles with n(T ) = n and n(S) = k among all tiles. More precisely, let Tn,k denote the family of patches
that consist of two neighbouring tiles, one of which has n facets and the other has k facets. We have

H(n, k) = lim
r→∞

#{Π ∈ Tn,k : Π ⊂ r Bd
}

#{T ∈ T : T ⊂ r Bd}
if n 6= k;

H(n, n) = lim
r→∞

2 · #{Π ∈ Tn,n : Π ⊂ r Bd
}

#{T ∈ T : T ⊂ r Bd}

where the limits make sense because of uniform patch frequency. Naturally, H(n, k) is non-zero only for finitely many
pairs. The neighbourly indicator is symmetric in its variables, hence for any n, k we have

H(k, n) = H(n, k). (8)

If, for fixed n, we calculate the total number of neighbours of n-faceted tiles (in a big ball) by classifying the
neighbours according to their number of facets, then we obtain

n · pn =

∑
k

H(n, k). (9)
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In addition for any tile T , n(T ) · m(T ) is the total number of facets of the neighbours of T , hence again classifying
the neighbours of a tile according to their number of facets leads to

〈n · m〉 =

∑
n

∑
k

k H(n, k). (10)

Using these formulae, we can express 〈nz
〉 for z ∈ R in terms of the neighbourly indicator as follows:

〈nz
〉 =

∑
n

nz pn =

∑
n

nz−1npn

=

∑
n

∑
k

nz−1 H(n, k) =

∑
n

∑
k

kz−1 H(n, k). (11)

Comparing (11) for z = 2 and (10) completes the proof of the Weaire sum rule Theorem 1.

Remark 4. The Weaire sum rule (1) holds for any finite tiling by d-cells of some topological space if any facet is
contained in exactly two cells. In particular, (1) holds for any facet-to-facet tiling of any compact topological d-
manifold.

The proof of this statement runs as the proof of Theorem 1, only there is no need to take limits in the definition of
pn and H(n, k).

Remark 5. If, in a tiling, any facet is contained exactly in two tiles, but two tiles may have more than one common
facet, then, in the definition of H(n, k), each pair (T, S) of neighbouring tiles is counted as many times as there are
common facets S and T . Using this modified notion, the proof of Theorem 1 goes through, hence we have the Weaire
sum rule (1) both for quasiperiodic tilings and for finite tilings of compact topological d-manifolds.

Remark 6. Given a tiling T of either types discussed above, we can associate a natural probability space defined on
the space Z of integers. In this space, any integer n occurs with probability pn , where pn is the probability that tile of
T has n facets. If f is any function of integers, then its expected value is

〈 f 〉int =

∑
n

f (n)pn . (12)

For any positive integer n, we define m(n) to be the average of m(T ) over all tiles T with n facets. More precisely, let
Tn be the family of tiles with n facets, and let N (r) be the number of tiles of T that are contained in r Bd . In the case
of quasiperiodic tilings, we have

m(n) = lim
r→∞

∑
{T ∈Tn : T ⊂r Bd }

m(T )

#{T ∈ Tn : T ⊂ r Bd}
, (13)

which in turn yields that

m(n) = lim
r→∞

( ∑
{T ∈Tn : T ⊂r Bd }

n · m(T )

)/
N (r)

n · #{T ∈ Tn : T ⊂ r Bd}/N (r)
=

∑
k

k H(n, k)

npn
. (14)

Naturally, the same formulae hold for finite tilings, only we do not need the limiting process. We also deduce that

〈nz
〉int = 〈nz

〉 for any z ∈ R;

〈m(n)〉int = 〈m〉;

〈n · m(n)〉int = 〈n · m〉.

Therefore we conclude the Weaire sum rule (1) in the equivalent form

〈n2
〉int = 〈n · m(n)〉int. (15)

This is the traditional form of the Weaire sum rule in the papers [20,21,6,7,16,17].
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5. Valences of vertices and dual tilings in the planar case

In this section we introduce some notions related to vertex figures for planar tilings. These notions are important
from the point of view of the Weaire sum rule, because they yield corresponding characteristics of the dual tilings.

If T is an edge-to-edge tiling of R2 with finite protoset and uniform patch frequency, then the star of a vertex v

is the union of the edges of the tiling containing v. We say that two stars are of the same type if they are congruent,
and observe that there are only finitely many types of stars up to congruence. Given a star Π , its probability π(Π ) is
defined with respect to congruence and not translational equivalence; namely,

π(Π ) = lim
r→∞

number of stars congruent to Π in r B2

number of vertices in r B2 .

We write V to denote the family of vertices of T , and %(v) to denote the valence (or degree) of the vertex v.
Therefore, for any positive integer n, we may define πn to be the probability that a vertex has valence n. We note that,
for any z ∈ R, the expected value of %z is

〈%z
〉vert = lim

r→∞

∑
v∈V∩r B2

%z(v)

#(V ∩ r B2)
=

∑
k

kzπk . (16)

An edge-to-edge tiling Tdual with finite protoset and uniform patch frequency is called the dual of T if the following
holds. There exist bijective correspondences between the tiles of T and the vertices of Tdual, and between the vertices
of T and the tiles of Tdual in such a way that, for any tile T of either T or Tdual and for any vertex v of T , the image
of T is a vertex of the image of v. If f is a function on the tiles of Tdual, then we write 〈 f 〉dual to denote the expected
value provided that it exists. Now the probability pn that a tile of Tdual has n sides is πn , therefore, for any z ∈ R, we
have

〈nz
〉dual = 〈%z

〉vert. (17)

For any planar tiling, the expected value of the valences of the vertices and the number of sides of the tiles are
related as follows.

Remark 7. If T is an edge-to-edge planar tiling with finite protoset and uniform patch frequency, then

1
〈n〉

+
1

〈%〉
=

1
2
. (18)

Moreover, if the valence of each vertex is at least three, then 3 ≤ 〈n〉, 〈%〉 ≤ 6, and for trivalent tilings, we have
〈n〉 = 6.

The statement is well known, but we provide a quick proof for the sake of completeness. We write Σ (r) to denote the
cell complex that consists of the tiles lying in r B2, their edges and their vertices, and write e(r) to denote the number
of edges of Σ (r). In addition, let V be the family of vertices of T .

Since, for large r , both the union of the two-cells in Σ (r) and its complement are connected, we deduce that the
Euler characteristics of Σ (r) is one (see Armstrong [1]). In particular,

#(Σ (r) ∩ V) − e(r) + #(Σ (r) ∩ T ) = 1. (19)

Since any edge of a tile of T that has an endpoint in Σ (r) has exactly two endpoints in Σ (r) unless the edge is
close to the boundary of r B2, we deduce

lim
r→∞

∑
v∈Σ (r)∩V

%(v)

2e(r)
= 1. (20)

In addition, counting the edges of the tiles in Σ (r) leads to

lim
r→∞

∑
T ∈Σ (r)∩T

n(T )

2e(r)
= 1. (21)
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Fig. 6. The modified Penrose tiling.

We deduce by (19)–(21) that

1
〈n〉

+
1

〈%〉
= lim

r→∞

#(Σ (r) ∩ T )∑
T ∈Σ (r)∩T

n(T )
+ lim

r→∞

#(Σ (r) ∩ V)∑
v∈Σ (r)∩V

%(v)

= lim
r→∞

#(Σ (r) ∩ T )

2e(r)
+ lim

r→∞

#(Σ (r) ∩ V)

2e(r)
= lim

r→∞

e(r) + 1
2e(r)

=
1
2
.

Finally, since any tile has at least three edges, if the valences of the vertices are always at least three, then (18) proves
3 ≤ 〈n〉, 〈%〉 ≤ 6.

6. Examples — some simple quasiperiodic tilings generated from the Penrose tiling

If T is any of the tilings in the examples below, then the dual tiling Tdual can be defined as follows. For any vertex
v of T , we define the associated cell of Tdual to be a convex hull of the circumcentres of the tiles of T that contain v.
These associated cells form the tiles of Tdual.

6.1. The Weaire sum rule for the modified Penrose tiling

In this section we calculate separately the two sides of the Weaire sum rule Theorem 1 for a modified version of
the Penrose tiling, and demonstrate that the two sides coincide. The modified Penrose tiling is constructed as follows.
We start with the version with two rhombi as in Fig. 3, and cut each thin rhombus into two triangles by the shorter
diagonal (see Fig. 6). Both 〈n2

〉 and 〈nm〉 are determined on the basis of formulae at the end of Section 2. In the

calculations, we use the golden ratio τ =

√
5+1
2 satisfying τ 2

= τ + 1.
For the original Penrose tiling in Fig. 3, Henley [8] (see p. 799) calculated that the probability pthin of the thin

rhombi and the probability pfat of the fat rhombi satisfy pfat
pthin

= τ . We deduce by pfat + pthin = 1 that

pthin = 2 − τ ;

pfat = τ − 1.

It follows that, for the modified Penrose tiling on Fig. 6, we have

p3 =
2pthin

2pthin + pfat
=

6 − 2τ

5
; (22)

p4 =
pfat

2pthin + pfat
=

2τ − 1
5

. (23)
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In particular, (7) yields that

〈n2
〉 = 9p3 + 16p4 =

38 + 14τ

5
. (24)

Let us calculate the numbers H(n, k). The fact that makes their calculation simple is that any rhombus in the modified
Penrose tiling has two rhombus neighbours and two triangle neighbours. In particular, H(4, 4) = H(4, 3), hence
combining 4p4 = H(4, 4) + H(4, 3) (cf. (9)) and (8) leads to

H(4, 4) = H(4, 3) = H(3, 4) = 2p4 =
4τ − 2

5
.

It follows by (9) that

H(3, 3) = 3p3 − H(3, 4) = 4 − 2τ.

We conclude by (10) that

〈n · m〉 = 3H(3, 3) + 4H(3, 4) + 3H(4, 3) + 4H(4, 4) =
38 + 14τ

5
, (25)

which agrees with 〈n2
〉 according to (24), as is required by the Weaire sum rule.

6.2. More on the modified Penrose tiling

We discuss some additional characteristics of the modified Penrose tiling defined in Section 6.1 using the values
calculated in Section 6.1. The expected number of facets is

〈n〉 = 3p3 + 4p4 =
2τ + 14

5
= 3.4472. (26)

Next, we calculate the possible values of m(n). Since any rhombus has two triangular and two quadrilateral
neighbours, we have

m(4) =
2 · 3 + 2 · 4

4
= 3.5.

It follows by (12) applied to f (n) = n · m(n) and by (25) that

3m(3)p3 + 4m(4)p4 = 〈n · m(n)〉int = 〈n · m〉 =
38 + 14τ

5
,

therefore

m(3) =
〈n · m(n)〉int − 4m(4)p4

3p3
=

9 + τ

3
= 3.5393.

It also follows (compare (26)) that the expected value of the facet coordination number is

〈m〉 = 〈m(n)〉int = m(3)p3 + m(4)p4 =
83 + 14τ

30
= 3.5217 > 〈n〉; (27)

namely, the expected value of the facet coordination number is larger than the expected value of the number of facets
in accordance with Conjecture 3.

6.3. Vertex types and dual tiling for the Penrose tiling

Let us consider the “marked” version of the Penrose tiling in Fig. 3; namely, the edges are marked to force the
deflation rule (see Fig. 5). de Bruin [4] proved that the vertices in the Penrose tiling have eight different types of
(marked) stars. Following tradition, the eight vertex types denoted by S, K, Q, D, J, S3, S4 and S5 are shown in Fig. 7.
Later, Henley (see [8], Table I) calculated the probability of these vertex types (see Table 1).

Fig. 7 shows that the possible values of the valences of the vertices are 3, 4, 5, 6 and 7, as in Table 2.
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Table 1
Probability distribution of the vertex types in the Penrose tiling

π(S) =
18−11τ

5 ; π(K ) = 5τ − 8; π(Q) = 5 − 3τ ; π(D) = 2 − τ

π(J ) = 2τ − 3; π(S3) = 13 − 8τ ; π(S4) = 13τ − 21; π(S5) =
47−29τ

5

Table 2
Probability distribution of the valences in the dual Penrose tiling

π3 = π(Q) + π(D) = 7 − 4τ = 0.5278
π4 = π(K ) = 5τ − 8 = 0.0901
π5 = π(S) + π(J ) + π(S5) = 10 − 6τ = 0.2917
π6 = π(S4) = 13τ − 21 = 0.0344
π7 = π(S3) = 13 − 8τ = 0.0557

Fig. 7. Vertex figures for the Penrose tiling.

Table 3
Probability distribution of the valences in the modified Penrose tiling

π4 = π(D) = 2 − τ = 0.3819
π5 = π(S) + π(S5) + π(J ) + π(K ) + π(Q) = 7 − 4τ = 0.5287
π6 = π(S4) = 13τ − 21 = 0.0344
π7 = π(S3) = 13 − 8τ = 0.0557

Since 〈n〉 = 4 for the Penrose tiling, we deduce 〈%〉vert = 4 by the formula 1
〈n〉

+
1

〈%〉
=

1
2 (see (18)). In addition,

〈%2
〉vert = 9π3 + 16π4 + 25π5 + 36π6 + 49π7 = 66 − 30τ = 17.4589.

Concerning the dual of the Penrose tiling (depicted in Fig. 8), we have 〈n2
〉dual = 〈%2

〉vert according to (17), therefore
the Weaire sum rule Theorem 1 yields

〈nm〉dual = 〈n2
〉dual = 66 − 30τ = 17.4589.

6.4. The dual tiling for the modified Penrose tiling

Let us now turn to the modified Penrose tiling in Fig. 6. Based on the values in Table 1, it is not hard to determine
the probability distribution of valences of the vertices. In this case, the possible values of the valences of the vertices
are 4, 5, 6 and 7, and we have Table 3.

In particular,

〈%〉vert = 4π4 + 5π5 + 6π6 + 7π7 = 8 − 2τ = 4.7639;
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Fig. 8. The dual of the Penrose tiling.

Fig. 9. The dual of the modified Penrose tiling.

〈%2
〉vert = 16π4 + 25π5 + 36π6 + 49π7 = 88 − 40τ = 23.2786.

Let us turn to the dual of the modified Penrose tiling (see Fig. 9). Since 〈n2
〉dual = 〈%2

〉vert according to (17), we
conclude by the Weaire sum rule Theorem 1 that

〈nm〉dual = 〈n2
〉dual = 88 − 40τ = 23.2786.

6.5. The Dirichlet–Voronoi tiling with respect to the vertices of the Penrose tiling

In this section we discuss the Dirichlet–Voronoi tiling TDV with respect to the vertices of the Penrose tiling (see
Fig. 4). Now TDV is the dual of the triangular tiling, which is obtained from the Penrose tiling in Fig. 3 by cutting
each rhombus into two by its shorter diagonal (see Henley [8], p. 799, Fig.4). Checking the eight vertex types in Fig. 7
of the Penrose tiling shows that TDV consists of tiles with 5, 6 and 7 sides. Writing pn to denote the probability that a
tile of TDV has n sides, Table 1 yields Table 4.
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Table 4
Probability distribution of the side numbers in the Dirichlet–Voronoi tiling

p5 = π(S) + π(K ) + π(Q) + π(S5) = 10 − 6τ = 0.2917
p6 = π(D) + π(S4) = 12τ − 19 = 0.4164
p7 = π(J ) + π(S3) = 10 − 6τ = 0.2917

We have

〈n〉 = 5p5 + 6p6 + 7p7 = 6.

In addition, the Weaire sum rule Theorem 1 yields

〈nm〉 = 〈n2
〉 = 25p5 + 36p6 + 49p7 = 56 − 12τ = 36.5835.

7. Conclusion

A general method has been developed to characterize the first neighbour topological structure (i.e. the nearest-
neighbour local environment) in quasiperiodic cellular systems composed of d-dimensional generalized polytopes
(cells).

By introducing the notion of the facet coordination number and of neighbourly indicators, we have proved that the
validity of the Weaire sum rule can be extended to all quasiperiodic systems that are generated as a result of tessellation
with uniform patch frequency. It should be emphasized that the neighbourly indicators are simply topological invariant
by which the local topological structure of periodic and quasiperiodic cellular systems can be quantitatively evaluated
and compared (see [16]).

The application of the method outlined was demonstrated in simple examples based on the analysis of various 2D
quasiperiodic systems constructed from the well-known Penrose tiling with two decorated rhombus tiles.
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